Mabot

HiCode 帮助文档

版本号:V1.0 日期:2021-02-23

目录

一、HiCode 简介2
二、界面导航3
2.1 我的项目列表
2.2 程序编写页面4
2.3 自定义操控盘页面
三、快速入门7
四、 指令块介绍 25
4.1 运动
4.4 声音
4.1 事件
4.2 控制
4.5 侦测
4.6 逻辑运算
4.7 变量
4.8 同时执行和顺序执行

一、HiCode 简介

HiCode 是面向 STEAM 教育的可视化积木编程软件,可以让孩子像玩积木拼图一样连接各种指令。

HiCode 可以控制 Mabot 机器人完成各种各样的动作。包含控制 Mabot 的驱动球转动、 关节球旋转、亮起不同颜色的灯光、发出声音、探测前方的距离、识别颜色、检测反射光 和环境光的强度、检测触碰球的状态等。

通过 HiCode 可以让孩子了解到事件、判断、循环、变量等基本的编程知识。培养孩子的数理思维、计算思维、将复杂问题分解成简单问题的能力。

支持系统: iOS 系统 9.0 及以上、安卓系统 6.0 及以上。

支持蓝牙: 蓝牙 4.0 及以上。

支持设备:安卓平板、苹果平板

IOS (Pad端)

Android(PAD端)

扫描二维码下载 HiCode

二、界面导航

2.1 我的项目列表

- ▶ 点击【1】按钮可创建一个新项目。
- ▶ 点击项目图标,可进入项目内页。
- ▶ 点击【2】按钮会弹出【重命名】和【删除】2个按钮。

HiCode 操作帮助文档

2.2 程序编写页面

- a) 点击【1】按钮返回到我的项目列表。
- b) 点击【2】按钮修改项目名称。

c) 区域【3】为指令块:提供编程所有的指令块,可以按照分类及颜色查找所需的指令块。

▶ 运动:可以控制 Mabot 驱动球或关节球转动、停止、或获取转动值等。

▶ 声音:可以控制 Mabot 主控球、驱动球亮起不同颜色的灯光以及让 Mabot 主控球的蜂鸣器发出声音等。

▶ 事件:事件作用是触发程序执行。程序的第一个指令块一定是事件指令块。

▶ 控制:包含条件判断、循环、等待等指令块,用于控制指令块执行的流程。

▶ 侦测:可以获取传感器的数据。例如获取红外传感器检测与前方的距离、触碰传感器是否被按下、颜色传感器识别到设定的颜色。一般需要配合循环、判断指令块一起使用。

▶ 运算:含数学计算、取随机数以及逻辑运算(或、与、非)等。

▶ 变量:变量相当一个存放数据的容器,这些数据可以被更改,数据可以是数字、 字符等。(只能用来存储传感器的值)

d) 区域【4】为撤销、重做按钮。如果做错了什么,点一下撤销就可以回到上一步操作,若是要再做一次,可以点击重做按钮。

e) 区域【5】的按钮为缩小、还原、放大编程区的大小。

f)点击【6】按钮,下载程序到 Mabot 主控球,下载完成后,点击 Mabot 主控球上 的按键执行程序,再次点击主控按钮退出程序。当蓝牙未连接时点击直接进入连接蓝牙界 面

g) 点击【7】为蓝牙连接按钮。

h) 点击【8】按钮保存当前程序。

i) 区域【9】为切换编程页面和操控页面。在操控盘页面的按钮生效之前需要在编程 页面先进行自定义。

▶ 编程页面:进行编程的页面

▶ 自定义操控盘页面:在编程区对自定义操控盘上的控件进行自由编程后,切换到操作盘可进行在线即时操控。

j) 点击【10】按钮,进入 Mabot 调试页面。可以查看已经连接 Mabot 功能球的数量 和调试 Mabot 功能球参数。

2.3 自定义操控盘页面

a) 点击【1】按钮, 启动或暂停自定义操控盘功能。

b) 区域【2】为操控区:提供自定义操控的功能;只有定义了操控盘的区域的功能, 启动操控盘后功能键才能使用。

▶ 操作盘:执行在编程页面自定义的操作盘功能

- ▶ 滑块:执行在编程页面自定义的滑块功能
- ▶ 开关:执行在编程页面自定义的开关功能
- ▶ 按键:执行在编程页面自定义的按键功能

三、快速入门

搭建下面的构型,然后长按电池球的开机按钮。

a) 创建一个新项目或进入已有项目

▶ 点击【新建项目】按钮创建一个新项目进入编程界面。

HiCode 操作帮助文档

▶ 点击项目进入编程页面

- b) 连接蓝牙
- ▶ 点击蓝牙连接按钮

▶ 将移动设备靠近 Mabot 进行搜索。

选择要连接的 Mabot。列表中搜索到多个主控球时通过下面的方式连接到想要的 主控球。

方式 1: 通过 Mabot 的名称可以判断哪个主控球是想要连接的主控球。

方式 2: HiCode 进入蓝牙搜索页面,然后长按 Mabot 主控球上的按钮 2 秒以后,主控 列表中对应的图标会闪烁。

要求: 主球球固件版本号 1288 及以上。

可以在<u>https://mabot.bellrobot.com/software-download.html</u>网站下载Mabot固件升级工具。

▶ Mabot 连接成功后,点击【返回】按钮可以返回到上一个页面。

▶ 区域【1】为搜索到 Mabot 主控球的列表,在此可切换设备。

> 点击【2】按钮为 Mabot 主控球重新命名新的名称,目的是有多个 Mabot 主控球时可以通过名称进行区分。

▶ 点击【3】按钮断开当前连接的 Mabot 主控球。

▶ 区域【4】给 Mabot 主控球设置启动时亮起的颜色,同时会改变重新启动时驱动球的颜色。

c) 调试 Mabot: 查看 Mabot 已连接功能球的数量和调试功能球的参数,同时也可以 判断每个功能球对应在 HiCode 中的编号。

▶ 点击调试按钮

▶ 查看 Mabot 功能球的连接数量是否和搭建的构型一致,如果不一致请检查 Mabot 构型。比如:点击驱动球图标可进入驱动球调试页面。

▶ 拖动滑块设置编号为1的驱动球的功率让驱动球转动起来,如果 Mabot 小车左轮转动则1号驱动球对应左轮否则为右轮。

- d) 编写程序: 让 Mabot 小车前进一段距离
- ▶ 点击【事件】按钮,拖动第一个指令块即【开始】指令块

> 点击【运动】按钮,拖动第一个指令块并在【开始】指令块下面连接上。

HiCode 操作帮助文档

▶ 点击驱动球编号按钮。

> 观察驱动球的编号对应的是左轮还是右轮。

点击1号驱动球观察到 Mabot 小车是左轮闪绿灯,则确定1号驱动球对应左轮。(如果1号驱动球对应 Mabot 小车是右轮闪亮,则1号驱动球是右轮)。

点击 2 号驱动球观察到 Mabot 小车是右轮闪绿灯,则确定 2 号驱动球对应右轮。(如 果 2 号驱动球对应 Mabot 小车是左轮闪亮,则 2 号驱动球是左轮)。

确定驱动球编号对应的是左轮还是右轮后点击【确定】按钮。

➢ 要让 Mabot 前进一段距离,需要设置左轮顺时针转动右轮逆时针转动,同时左右轮的时间、功率必须一样。点击 2 号轮子的转动方向按钮。

HiCode 操作帮助文档

设置2号轮子转动方向为逆时针转动。

▶ 点击【下载】按钮开始下载程序到 Mabot,下载成功后点击主控球上的按键开始 执行程序。

注**:**

> Mabot 前进为什么是左轮顺时针转动, 右轮逆时针转动?

驱动球的旋转方向使用的是驱动球黄色面朝上的方向作为标准,所以要让两侧的轮子

同时向前转动,需要设置左轮顺时针转动右轮逆时针转动。

> 如果要让 Mabot 左转可以设置右轮的功率/速度大于左轮。

> 如果要让 Mabot 右转可以设置左轮的功率/速度大于右轮。

> 如果要让 Mabot 后退可以设置左轮逆时针转动, 右轮顺时针转动, 并且时间和功 率一样。

▶ 点击主控球上的任意按钮执行已经上传到主控球的程序,再次点击主控上的按钮 停止运行程序。

点击主控球上的任意 按钮执行已经上传到 主控球的程序,再次 点击主控球上的按钮 停止运行程序。

e) 编写操控模式程序: 使用自定义操控盘控制小车。

▶ 点击【事件】按钮,拖动指令块 当操作盘 顶部按钮 • 按下 •

下面连接上。并配置好驱动球参数

<	项目9 保存 《/〉 &	*
国动		
声音	当操作盘 顶部按钮 ◆ 按下 ◆ 驱动球 1 ◆ , 顺时针 ◆ 旋转,功率 30 ,持续 1 秒, 66	
事件		
 控制		0
○ 侦测		0
2 运算		949
変量	+ - 📀	2

▶ 点击 些 进入自定义操控盘界面进行控制

HiCode 操作帮助文档

▶ 点击启动按钮

▶ 点击方向盘顶部的按钮,控制驱动球

HiCode 操作帮助文档

注:

▶ 需要使用自定义操控盘页面的其他按键,需要在编程页面进行编辑后进行控制, 如果没有在编程页面定义则不能使用且为不可选状态。

- ▶ 启动自定义操控后会终止主控球正在执行的程序
- ▶ 每个按键需要单独使用不能组合使用

四、 指令块介绍

4.1 运动

控制 Mabot 驱动球转动、关节球旋转等。

▶ 驱动球 1 ▼ , 顺时针 ▼ 旋转,功率 30 ,持续 1 秒, 🖏

让1号驱动球以30的功率(在功率恒定时,驱动器的负载增加速度会随着变小)顺时针转动1秒,1秒后将执行此语句块下面连接的指令块。

1号驱动球以30的功率顺时针一直转动,此指令块会与下一条指令块同时执行。

1号驱动球以30转/分的速度顺时针转动1秒,1秒后将执行此指令块的下一条指令

块。

\triangleright							
,	驱动球	1 🔻	顺时针 ▼	旋转,	速度	30	转/分

1号驱动球以30转/分的速度顺时针一直转动,此指令块会与下一条指令块同时执行。

1号驱动球缓慢停止运动。

۶ 重置驱动球 的度数

重置1号驱动球的旋转度数

获取1号驱动球的当前的旋转度数。

and the second		
治中 均制取分时	1 😎	一运动
/月2八]工作的3匹40125		EAJ

只能在自定义滑块事件下使用,滑块控制1号驱动球的运动。

只能在自定义滑块事件下使用,滑块控制1号旋转关节球转动。

关掉主控的灯光。也可以关掉驱动球的灯光。

播放蜂鸣器, 音调 高 ▼ , 音阶 1 ▼ , 持续 1 秒, 🖏

蜂鸣器播放高音,音调为1,持续1秒,1秒后将执行此指令块的连接的下一条指令。

▲ 播放蜂鸣器, 音调 高 ▼ , 音阶 1 ▼

让蜂鸣器一直播放高音,音调为1,此指令块会与连接的下一条指令块同时执行。

蜂鸣器停止播放声音。

4.1 事件

事件作用是触发程序执行。程序的第一个指令块一定是事件指令块。

按下主控球按钮时,执行【开始】指令块下面的程序;

如果程序存在多个【开始】指令块,按下主控球按钮时,同时执行所有【开始】指令块下面的程序。

广播消息1,并等待接收,接收到消息1后执行此指令块下面的程序。此 指令与指令块配合使用。

>					
	当红外传感器		距离	5	cm

当红外传感器1检测到的距离小于等于5cm时,则执行此指令块下面的程序。

当颜色传感器		黑色 ▼

当颜色传感器1检测到黑色时,则执行此指令块下面的程序。

>			
	当触碰传感器	的状态为	按下 🔻

当触碰球1按下时则执行此指令块下面的程序。

▶ 当陀螺仪的 俯仰角度 ▼ ≤ ▼ 0

当陀螺仪的俯仰角小于等于0时则执行此指令块下面的程序。

当塌作舟	1630块纽 🗕	坡下 -
白採作盘	贝部按钮 🔻 📗	技下

当操控盘顶部按钮按下时则执行此指令块下面的程序。作用于自定义操控盘页面。

当漫快	1 📼	漫动时	- 松壬后复百 •

当滑块按钮滑动时则执行此指令块下面的程序。作用于自定义操控盘页面。

当开关按钮打开时则执行此指令块下面的程序。作用于自定义操控盘页面。

当按键按钮按下时则执行此指令块下面的程序。作用于自定义操控盘页面。

4.2 控制

控制包含条件判断、循环执行等指令块,主要用于控制指令块执行的流程。

等待1秒后执行此指令块下面连接的指令块。

当前指令块里面的指令重复执行10次后,执行此指令块下面连接的指令块。

一直循环执行当前指令块里面的指令。

重复执行直到
t

每次执行 时先判断条件是否成立,当条件不成立时则执行当前指

令块里面的指令,执行完里面的指令块再次执行 执行下一条指令。

否则跳过当前指令块并

判断当前指令块的条件是否成立,成立则执行此指令块里面的指令。一般配合循环指 令块和传感器指令块使用。

跳出当前循环并开始执行循环下面的指令块,此语句块必须放到循环语句块里面使用, 一般配合判断指令块使用。

判断当前模块的条件是否成立,成立则执

行里面的指令,否则执行

里面的指令。

停止正在执行的全部脚本。

等待条件是否成立,如果成立则执行此指令块下面连接的指令块。

4.5 侦测

可以获取传感器的数据。例如获取红外传感器检测与前方的距离、触碰传感器 是否被按下、颜色传感器识别到设定的颜色。一般需要配合循环、判断指令块一起 使用。

判断1号颜色传感器的值是否为黑色,需要配合循环语句块、判断语句块同时使用。

判断 1 号红外传感器前方距离是否小于等于 5cm, 需要配合条件、循环语句块同时使用。可检测的距离在 5-15cm 内。

判断触碰球1的是否被按下,需要配合条件、循环语句块同时使用。

获取1号颜色传感器在环境光模式下的值。

如果颜色传感器模式设置为颜色识别,则可识别的颜色分别是黑色、蓝色、绿色、紫 色、红色、白色、紫色、橙黄色。

如果模式设置为环境光,获得的值为环境光的强度,范围为0到100。

如果模式设置为反射光,则获得的值为反射光的强度,范围为0到100。

1		(
	获取红外传感器。		$\overline{}$	的個

获取1号红外传感器检测前方的距离。

获取陀螺仪的俯仰角角度。

判断陀螺仪的俯仰角角度是否小于 0。

4.6 逻辑运算

逻辑运算指令块包含数学计算(加、减、乘、除)以及逻辑运算(或、与、非、真、 假)等。

对两个数值进行加。

对两个数值进行减。

对两个数值进行乘。

对两个数值进行除。

在 1 和 10 之间取随机数

从 0-10 随机生成一个整数。

判断 2 个数值之间的关系,如果条件成立,则为真,否则为假,此指令块与条件判断 指令块配合使用。

逻辑或: 若两个条件中其中任何一个条件成立,则返回"真",如果两个条件都不成 立返回"假"。

逻辑非: 若条件成立,则返回"假";若条件不成立,则返回"真"。

4.7 变量

变量:变量相当一个存放数据的容器,这些数据可以被更改,数据可以是数字、字符等。

使用变量。

4.8 同时执行和顺序执行

执行完当前指令块再执行下一条指令块。

当前指令块与下一条指令块同时执行。